

# NEWYORK FACEMASK

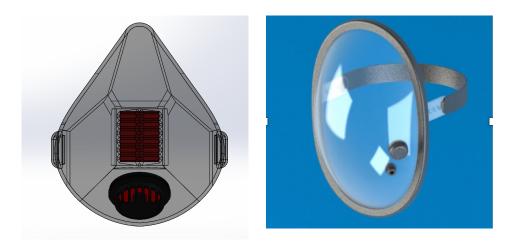
**GROUP MEMBERS** 

ABDALLAH ALOTAIBI, WEBSITE DEVELOPER JEHAD ALQUBAISI, CLIENT CONTACT ADI ALQURASHI, DOCUMENT MANGER ABDULLAH ALSHAMMARI, PROJECT MANGER SULTAN ALZAHRANI, BUDGET LIAISON

# PROJECT DESCRIPTION

- Design a Face Mask with following features
  - **COMFORTABLY BREATHABLE:** Assisted by an electronic ventilation system
  - **SOCIALLY ACCEPTABLE:** Allow user to assist in verbal and non-verbal communication
- The project is sponsored by Northern Arizona University (NAU)
- The Client is Dr. Trevas

# CUSTOMER REQUIREMENTS


| Customer Requirements                        | Met By Design                                    |
|----------------------------------------------|--------------------------------------------------|
| Allow unrestricted exhalation and inhalation | Presence of filter makes unrestricted exhalation |
|                                              | and inhalation                                   |
| Allow unrestricted speech and non-verbal     | Presence of speaker system allow speech and      |
| communication                                | transparent material allow unrestricted non-     |
|                                              | verbal communication                             |
| Allow easy eating and drinking while wearing | Not yet present in the design                    |
| mask                                         |                                                  |
| Allow uninterrupted operability in an 8-hour | Presence of battery makes uninterrupted          |
| working day                                  | operation for 8 hours                            |
| Speaker present to make the voice loud       | Speaker is present                               |
| Easy to wear                                 | Broad size makes it easy to wear                 |
| Not act as a carrier of virus                | Filter is not a carrier of virus                 |
| Reliable                                     | Plastic body makes it reliable                   |
| Durable                                      | Polynomial material to make it durable           |

# ENGINEERING REQUIREMENTS

| Engineering Requirements | <b>Operational Values</b> | Met by Design                                              |
|--------------------------|---------------------------|------------------------------------------------------------|
| Length                   | < 8 inches                | The design length is around 6 inches                       |
| Battery Time             | > 8 hours                 | Lithium battery gives more then 8 hours                    |
| Expiration Rate          | 6 liter/min               | Fan provide more then 6 liter/min flow                     |
| Tidal Volume             | 0.5 liter                 | Volume is less than 0.5 liter                              |
| Transparent Material     | < 2 %                     | Transparency of polynomial is less than 2                  |
| Weight                   | < 50 g                    | Lightweight plastic make the overall weight less than 50 g |
| Battery Capacity         | 6.6 W                     | Battery rating is 2800 mAh                                 |
| Filter Size              | < 12 x 12 inches          | HEPA Filter is 11.65 x 11.65 inches                        |
| Particulate Size         | 2.5                       | Filter is less than 2.8 hence safe to use                  |
|                          | 2.5                       | Filter is less than 2.6 hence sale to use                  |

# **DESIGN DESCRIPTION**

- Different ideas have generated to select the final design
  - Cloth Mask
  - Plastic Mask with Polynomial Surfaces
  - Plastic Mask with Curved Surface
- Decision Matrix used to select the final design
- Final Design selected
  - Plastic Mask with Polynomial Surface
- Currently, final design of the mask has selected
- CAD model has developed





# DESIGN DESCRIPTION

- Selected design is a kind of broad mask
- Covers nose and face
- N-95 Air Filter present at front for inhalation and Exhalation
- Suction Fan and Ventilation System will be fitted on the front Rectangular Inhalation Port
- Speaker present for sound
- Chip and battery install inside the mask for operation



#### Some components ordered and received shown



- Few tests have performed to select the best components like for fan.
- The selected fan out of multiple fans contains minimum amount of noise to affect the microphone
- Testing of components like speakers, microphone, pressure sensor has done with the Arduino
- For the implementation of facemask, silicon, epoxy and other related materials have ordered
- But after some trials for making the facemask, team decided to use a prefabricated facemask

- We decided to use a prefabricated mask that fit very nicely over our design
- A hole drilled in the mask
- Silicone tubing bring out of these hole
- A small silicon tube has inserted within the main silicon tube
- Silicone tube contains containing pressure sensor connector
- Pressure sensor has attached in the speaker
- Silicone tube contain wires to connect, provide power to Arduino, Fan, and Microphone
- All the wires have glued within the tube properly





- Silicon tubes have cut and glued in a way that tubes will not get block
- We drew a line around the center portion as well as the two exhaust and input filters
- The border has sewed from where it has cut and folded with glue
- To make the mask adjustable in size, added different size straps
- Several different sizes straps have made
- Each size has a different color button to keep the sets easy to tell from one another
- Another thing to make the mask fit individuals better and seal up any potential are gaps is to include adhesive back foam pieces that are cut two shapes that should already be effective but can also be cut down as needed

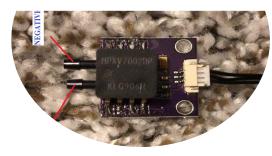


- A power button has been added to turn ON/OFF the device.
- A hole drilled in the back of the device strategically to reset the Arduino for the LED lights
- The button can push by something similar to Sim removal tool
- Filter Template has shown
- The filters have cut down
- Placed inside the filter caps





Arduino Code contains three main parts:


#### Pressure sensor



LED's







# FINAL DESIGN











# **TESTING PROCEDURES**

- Length
  - It can test by using the feet scale. The test can perform in any conditions inside the room. Feet scale is available in all the labs and it can easily perform the test.
- Battery Time
  - To test the battery time, full charged the battery and then keep the mask running with full load and note down the time using the mobile phone. This task can perform inside the room without any other equipment.
- Expiration Rate
  - This can test by using the anemometer available in the chemistry lab to test the air flow measurement. The device has to take in the chemistry lab to perform this test

# **TESTING PROCEDURES**

- Tidal Volume
  - To test this engineering requirement, use Spirometer. This device is available in the civil lab.
- Transparent Material
  - To test it, need clarity meter also called transparency meter. This device is available in the mechanical lab. For performing this test, the material for making the device has to take in the mechanical lab for performing the test
- Weight
  - To test this ER, need a scale machine which is easily available in most of the labs, including chemistry lab and mechanical lab.
    Hence this test can perform in the lab to measure the weight of device.

#### BUDGET

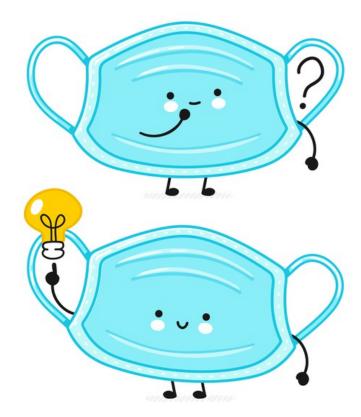
| Product          | Purpose          | Material      | Unit Cost | Cost    |
|------------------|------------------|---------------|-----------|---------|
| Epoxy Resin      | For adhesiveness | Glue material | \$34.99   | \$34.99 |
| Plasti Dip Black | For shaping      | Aluminum Foil | \$21.95   | \$21.95 |
| Acetone          | Remover          | Acid          | \$8.79    | \$8.79  |
| Airfit Cushion   | Filter           | Plastic       | \$14.01   | \$14.01 |
| Resin Casting    | Sealing          | Fabric        | \$14.99   | \$14.99 |
| Disc Pad         | Sealing          | Paper         | \$9.99    | \$9.99  |
| Adhesive Foam    | Sticking         | Foam          | \$13.85   | \$13.85 |
| Clay             | Facemask Design  | Clay          | \$18.99   | \$18.99 |
| Black Cotton     | Sealing          | Fabric        | \$16.99   | \$16.99 |
| Sponge Foam      | Edges            | Foam          | \$16.80   | \$16.80 |
| Direct           | Cliping          | Plastic       | \$9.99    | \$9.99  |

#### BUDGET

| Product          | Purpose        | Material         | Unit Cost | Cost    |
|------------------|----------------|------------------|-----------|---------|
| Neoprene         | Rolling        | Fabric Foam      | \$11.00   | \$11.00 |
| Facemask         | Model Mask     | Plastic          | \$15.89   | \$15.89 |
| Amplifier        | Voice Loudness | Plastic Silicone | \$35.99   | \$35.99 |
| Snap Button      | Stich          | Metal            | \$11.99   | \$11.99 |
| Face Shield      | Model Mask     | Plastic          | \$23.39   | \$23.39 |
| Mannequin Head   | Model Head     | Plastic          | \$22.99   | \$22.99 |
| USB Fan          | Air Pressure   | Plastic          | \$7.90    | \$7.90  |
| Cooling Fans     | Air Pressure   | Plastic Silicone | \$14.00   | \$14.00 |
| Transparent Mask | Model Mask     | Plastic          | \$15.99   | \$15.99 |
| Quilting Fabric  | Covers         | Fabric           | \$12.00   | \$12.00 |
| Filter           | Filtration     | Plastic          | \$34.99   | \$34.99 |

#### BUDGET

| Product               | Purpose           | Material       | Unit Cost | Cost    |
|-----------------------|-------------------|----------------|-----------|---------|
| Air Filter            | Filtration        | Plastic        | \$12.99   | \$12.99 |
| Life casting Alginate | Plaster for model | Plastic Cement | \$39.36   | \$39.36 |
| Blower Fan            | Air pressure      | Plastic        | \$9.99    | \$9.99  |
| Raspberry Pi          | Controller        | Silicon        | \$9.49    | \$9.49  |
| Sheet Rolls           | Sheet             | Fabric         | \$14.80   | \$14.80 |
| Pads                  | Padding           | Fabric         | \$16.13   | \$16.13 |
| Silicon Sealant       | Sealant           | Chemical       | \$16.50   | \$16.50 |
| Ribbon Band           | Padding           | Fabric         | \$6.99    | \$6.99  |
| Total                 |                   |                |           | \$585   |


#### **FUTURE TASK**

- Complete Testing will be done
- Modify the design if needed after complete testing

#### REFERENCES

- [1] Shenzhen Landful Textile and Trading, "4 types ready to ship air breathing valve white black color valve breathing valvula para mascarilla breathing valve for mask," Alibaba, [Online]. Available: https://www.alibaba.com/productdetail/4-types-ready-to-ship-air\_1600052226935.html?spm=a2700.7724857.normalList.80.699e70c7gXszou. [Accessed 13 October 2020].
- [2] Adafruit, "Lithium Ion Polymer Battery 3.7v 2500mAh," Adafruit, [Online]. Available: https://www.adafruit.com/product/328. [Accessed 13 October 2020].
- [3] Aideepen, "Aideepen Breakout Board MPXV7002DP Transducer APM2.5 APM2.52 Differential Pressure Sensor," Amazon, [Online]. Available: https://www.amazon.com/Aideepen-Breakout-MPXV7002DP-Transducer-Differential/dp/B01N9EUI4I. [Accessed 13 October 2020].
- [4] Sparkfun, "SparkFun Electret Microphone Breakout," Sparkfun, [Online]. Available: https://www.sparkfun.com/products/12758. [Accessed 13 October 2020].
- [5] Sparkfun, "SparkFun Mono Audio Amp Breakout TPA2005D1," Sparkfun, [Online]. Available: https://www.sparkfun.com/products/11044. [Accessed 13 October 2020].
- [6] Smart Air Filters, "Cannon HEPA Filter with Pre-filter," Smart Air filter, [Online]. Available: https://smartairfilters.com/cn/en/product/cannon-purifier-hepa-filter/. [Accessed 13 October 2020].
- [7] Arduino, "Arduino Nano," Arduino, [Online]. Available: https://store.arduino.cc/usa/arduino-nano. [Accessed 13 October 2020].

# ANY QUESTIONS

